# Interlaminar fracture tests: why we love UD specimens, why we hate multidirectional ones, and can this change?

Torquato Garulli

Part of the workshop: Mode I interlaminar fracture toughness and the factors affecting it. 14<sup>th</sup> May 2024 • Online







# Why even ask?

Structural applications → MD laminates But Interlaminar fracture standards → UD specimens

Why?

Is this conservative?  $\rightarrow$  Not obvious Is toughness the same?  $\rightarrow$  Not obvious

Is it that we like UD specimens more? If so, why?



Greenhalgh et al. 2009









### Can this change?

#### Fully-Uncoupled Multidirectional (FUMD) specimens, concept



Set of MD specimens with UD-like thermoelastic behaviour

- No couplings (in arms or uncracked region)
- Free orientations choice
- Arbitrary interface

What may be missing?

Migration:

Can we avoid it in mode I tests?



Varandas et al., 2019

#### Residual stresses:

Can we fully understand their effects?



## FUMD preliminary experimental results



# Conclusions

There are many (reasonable) reasons to love UD specimens

- As easy and as convenient as it gets
- Allow reasonable structural predictions (surprisingly)

There are (still) a few reasons to hate MD specimens:

- More complex behaviour
- Unsolved issues

Can this change?

- Potentially, with some research effort
- If it does, it will enable us to deliberately choose whether to use UD or MD specimens!

Part of the workshop: Mode I interlaminar fracture toughness and the factors affecting it. 14<sup>th</sup> May 2024 • Online

